Influence of free surface, unsteadiness and viscous effects on oar blade hydrodynamic loads.

نویسندگان

  • Alban Leroyer
  • Sophie Barré
  • Jean-Michel Kobus
  • Michel Visonneau
چکیده

Flow around a rowing blade is a very complex phenomenon, involving unsteady three-dimensional flow with violent motion of the free surface. However, in the literature, forces acting on blades are modelled using extreme and dubious simplifications. The aim of the present study was to evaluate the influence of free surface and unsteadiness (two physical characteristics that are commonly neglected when modelling loads on blades) as well as viscous effects. In fact, quasi-static approaches are often used, with no influence of the free surface effects. To conduct this study, computational fluid dynamics is used, supported by experimental results performed with a dedicated device reproducing a simplified rowing stroke in the towing tank. Comparisons show that both free surface flow and unsteadiness must be considered to capture the whole physics of the phenomenon accurately. In contrast, the viscous effects have a very limited influence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Effect of Free Surface on Hydrodynamic Performance of Propeller

Simulation of the flow around propeller is a complex fluid flow problem, especially when the propeller is close to free surface. In this study, the effect of different depths on the performance and efficiency of a B-Wageningen series close to surface of water have been numerically investigated. For this purpose the ANSYS-FLUENT commercial software has been used to solve the viscous, incompressi...

متن کامل

Chemical reaction and radiation effects on MHD free convection flow through a porous medium bounded by a vertical surface with constant heat and mass flux

In the present paper, an analysis was carried out to investigate effects of radiation on a free convection flow bounded by a vertical surface embedded in a porous medium with constant suction velocity. It was under the influence of uniform magnetic field in the presence of a homogenous chemical reaction and viscous dissipation with constant heat and mass flux. The non-dimensional governing equa...

متن کامل

شبیه‌سازی آیروهیدروالاستیک توربین بادی با سکوی کرجی‌وار

In this paper a multi-body system of barge type wind turbine under stochastic wave and wind has been modeled within MSC ADAMS. For wind loading, the stochastic turbulent wind data have been extracted using TurbSim software.Also, the AeroDyn module has been used for calculating lift and drag forces on the blades of turbine.. The hydrodynamic loads have been calculated using HydroDyn module withi...

متن کامل

Optimization of oar blade design for improved performance in rowing.

The aim of the present study was to find a more optimal blade design for rowing performance than the Big Blade, which has been shown to be less than optimal for propulsion. As well as the Big Blade, a flat Big Blade, a flat rectangular blade, and a rectangular blade with the same curvature and projected area as the Big Blade were tested in a water flume to determine their fluid dynamic characte...

متن کامل

Examining and calculation of non-classical in the solutions to the true elastic cable under concentrated loads in nanofilm

Due to high surface-to-volume ratio of nanoscale structures, surface stress effects have a significant influence on their behavior. In this paper, a two-dimensional problem for an elastic layer that is bonded to a rigid substrate and subjected to an inclined concentrated line load acting on the surface of the layer is investigated based on Gurtin-Murdoch continuum model to consider surface stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of sports sciences

دوره 28 12  شماره 

صفحات  -

تاریخ انتشار 2010